
 

 

 
 
 

Machine learning prediction algorithm to determine best performing routes in 
cognitive radio networks 

 
 

By 
 
 

Mukonyezi Isaac 
SEP15/COMP/0642U 

Option-Computer Networks 
 
 
 
 

Supervisor 
Johnson Mwebaze (PHD) 

UTAMU 
 
 
 
 

A Proposal Submitted To the Graduate School for a Dissertation in Partial  
Fulfilment of the Requirement for the Award of Msc. Computing of Uganda 

Technology And Management University. 
 
 
 
 
 
 
 

April, 2017 



 

 

 

DECLARATION 
I, Mukonyezi Isaac declare that the work in this proposal is original and has never been used before 

in any university or institution as an academic requirement. 

Mukonyezi Isaac 

Signature………………………………..      Date……………………..…………. 

Supervisor: Dr. Johnson Mwebaze (PhD) 
Signature………………………………..      Date……………………..…………. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Contents 
1. Introduction ........................................................................................................................................................... 1 

1.1 Background .................................................................................................................................................. 1 

1.2 Problem Statement ....................................................................................................................................... 1 

1.3 Objectives..................................................................................................................................................... 2 

1.3.1 General Objective: ................................................................................................................................... 2 

1.3.2 Specific Objectives: ................................................................................................................................. 2 

1.4 Research questions ....................................................................................................................................... 3 

1.5 Research plan ............................................................................................................................................... 3 

1.6 Anticipated Outcomes .................................................................................................................................. 3 

1.7 Motivation .................................................................................................................................................... 3 

1.8 Significance/ Justification of Study .............................................................................................................. 3 

1.9 Research Contribution .................................................................................................................................. 4 

2. Literature Review .................................................................................................................................................. 5 

2.1 Introduction .................................................................................................................................................. 5 

2.2 Cognitive Radio Technology ....................................................................................................................... 5 

2.3 Reasoning ..................................................................................................................................................... 6 

2.3.1 Reasoning Types ...................................................................................................................................... 6 

2.4 Learning in cognitive radio networks ........................................................................................................... 7 

2.4.1 Supervised Learning ................................................................................................................................ 7 

2.5 Cognitive Routing Tasks in CRNs .............................................................................................................. 8 

2.5.1 Inference and Reasoning Tasks ............................................................................................................... 9 

2.5.2 Modeling, Prediction, and Learning Tasks .............................................................................................. 9 

2.6 Routing Protocols for CRNs...................................................................................................................... 11 

2.7 Simulation Packages .................................................................................................................................. 12 

2.8 Evaluation Metrics ..................................................................................................................................... 12 

2.9 Research Gap ............................................................................................................................................. 13 

3. Proposed Methodology ........................................................................................................................................ 15 

3.1 Introduction ................................................................................................................................................ 15 

3.2 Learning ..................................................................................................................................................... 17 

3.2.1 Feature Extraction and Output Labeling ................................................................................................ 17 

3.2.2 Output labeling ...................................................................................................................................... 18 

3.2.3 Sample Collection .................................................................................................................................. 18 

3.2.4 Offline Training ..................................................................................................................................... 18 

3.3 Study Requirement ..................................................................................................................................... 18 

3.3.1 CR network configuration and simulation setup .................................................................................... 18 

3.4 Performance Parameters for Evaluation ..................................................................................................... 19 

3.4.1 Routing layer ......................................................................................................................................... 19 

References ................................................................................................................................................................... 20 



 

 

 

 

Abstract 
 

Intelligent Routing will influence the general performance of a communication network’s outturn 

and potency. Routing methods are needed to adapt to dynamical network hundreds and completely 

different topologies. Learning from the network setting, so as to optimally adapt the network settings, 

is a necessary demand for providing efficient communication services in such environments. 

Cognitive networks are capable of learning and reasoning and they energetically adapt to varied 

network conditions so as to optimize end-to-end performance and utilize network resources. In this 

proposed work we'll focus on machine learning in routing themes that features routing awareness 

and routing reconfiguration. 
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1. Introduction 

1.1 Background 

The Cognitive Radio Network is an innovative software defined radio technique considered to be one 

of the promising technologies to improve the utilization of the congested RF spectrum. Adopting CR 

is motivated by the fact that a large portion of the radio spectrum is underutilized most of the time. 

In CR networks, a secondary system/users can share spectrum bands with the licensed primary 

system/users, either on an interference-free basis or on an interference-tolerant basis.  

By definition, a Cognitive Radio is an “intelligent communication system that is aware of its 

surrounding environment (i.e., outside world), and uses the methodology of understanding-by-

building to learn from the environment and adapt its internal states to statistical variations in the 

incoming RF stimuli by making corresponding changes in certain operating parameters (e.g., transmit-

power, carrier-frequency, and modulation strategy) in real-time, with two primary objectives in mind: 

highly reliable communication whenever and wherever needed and efficient utilization of the radio 

spectrum.” [1].  

Cognitive Radio technology is based on the fact that the licensed users (also named primary users, 

PUs) are not always using their spectrum bands; CR brings new radio types—cognitive radios—that 

should firstly, identify the existing spectrum holes, and secondly, utilize them in a flexible manner, 

according to an access medium scheme.  

CRs have also been proposed for a wide range of applications including Internet of Things, 5G 

wireless networks and smart grid communications. CR promises to dramatically improve spectrum 

access, capacity, and link performance while also incorporating the needs and the context of the user. 

CRs are increasingly being viewed as an essential component of next-generation wireless networks. 

1.2 Problem Statement 

Conventional network forwards packets using routing algorithms and detect failures after packets 

are lost. Due to the cognitive nature of CRNs there is an opportunity to know the status of every 

node in the network, so it doesn’t send data using a route that cannot deliver the packet and in the 

long run preventing congestion. 

Previous similar works have focused mainly on simulation of machine-learning and AI techniques to 

problems of spectrum sensing, power control, and adaptive modulation in CRNs [2]. Future cognitive 
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networks will require greater architectural support from fully ‘cognitive routing protocols’ that will 

seamlessly incorporate AI-based techniques such as learning, planning, and reasoning in their design. 

Inference, reasoning, modeling and prediction cognitive tasks that future cognitive routing protocols 

must incorporate have been explored and incorporated in this research work [3]. Using this awareness 

they can adjust their operation to match current and near future network conditions. A Cognitive 

Network aims to be proactive, so that it can predict most of the usual use cases before they occur and 

adapt to those beforehand. In any case a Cognitive Network learns from every situation it encounters 

and uses that information for future cases. The main goal of a Cognitive Network is to increase 

network efficiency and performance. The important aspect of a cognitive network is that it optimizes 

data communication for the whole network between the sender and the receiver to meet the required 

end-to-end goals of users of the network. 

While spectrum sensing techniques and spectrum sharing solutions are two important aspects that 

have received the attention of the CRN community, routing in CRNs remains an important yet 

unexplored aspect.  

Several routing metrics were proposed; Assuming full spectrum knowledge, such as throughput 

maximizing protocols, delay minimizing protocols, route stability maximizing protocols and route 

maintenance minimizing protocols. These metrics will be used to collect data concerning the quality 

of the routes and the data will be used to model the prediction algorithm. 

1.3 Objectives  

1.3.1 General Objective: 

To develop and evaluate a machine learning algorithm that uses predictive analytics to determine best 

performing routes in a cognitive radio network. 

1.3.2 Specific Objectives:  

a) Provide CR capabilities at the different network layers such as sensing, PU detection, channel 

hand-off and decision making.  

b) Simulate the performance of routing level protocol metrics using the NS-3 environment  

c) Develop the learning the machine learning algorithm, train and test the algorithm. 

d) Release of the full source code, with additional guides on how to compile and run trial examples. 
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1.4 Research questions 

a) What are the cognitive routing tasks in Cognitive Radio Networks 

b) What are the current routing protocols in cognitive radio networks and the performance 

evaluation metrics that can be used for machine learning 

c) What are the best decision, planning and learning techniques to use at the network level? 

d) Can the proposed simulation framework be tested and verified for implementation? 

1.5 Research plan 

We will study the current work in routing for cognitive radio networks and then using both analytical 

modelling and simulation, we will test and evaluate the machine learning model as applied to the 

network level routing. 

1.6 Anticipated Outcomes 

1. A machine learning algorithm to support cognitive routing tasks through the use of predictive 

analytics. 

1.7 Motivation 

Cognitive Radio (CR) is one of the many long term developments that are currently taking place in 

the area of telecommunications. The need to develop cognitive radios has emerged after it was 

recognized that the adaptation on network changes would utilize the radio spectrum, communication 

and speed throughout the network. This has led to the need of development of efficient routing 

protocols that incorporate machine learning techniques that can achieve the purpose and thus the 

need to test and evaluate their performance. 

CRs would also benefit in the development of several applications such as cooperative networks, 

dynamic spectrum access, intelligent transport systems, public safety systems, 5G networks, and 

smart grid communications [3]. 

1.8 Significance/ Justification of Study 

This research work aims at supporting the work of producing better designs of routing protocols 

which leverage the power of machine learning that can enhance PU protection while at the same time 

providing full utilization of the spectrum. With the emergence of 5G technology, cognitive radios will 
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be the main tool to aid communication in an environment of ever increasing demand for higher data 

rates and increased spectrum utilization. Thus the need of an agile machine learning framework that 

can be used to test and evaluate routing protocols that support artificial intelligence through the 

implementation of machine learning techniques. 

1.9 Research Contribution 

An NS-3 based simulation framework that will be used to test and evaluate routing protocols that 

support for machine learning using Bayesian Networks techniques. The framework will offer 

Application Programming Interfaces to offer support to the research community to add to this work 

and also to accommodate integration with upper layers of the protocol stack. This framework will 

enable researchers quickly test and evaluate their routing protocols that support for AI through 

machine learning implementation. 
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2. Literature Review  

2.1 Introduction 

 

Figure 1: Components within a cognitive radio 

In the beginning the radio implemented consisted only of a software radio (see Fig. 1), which is 

programmed to transmit and receive waveforms. The cognitive radio is considered as an extension 

to the software radio, this extension is also the cognitive engine, composed of a knowledge base, 

reasoning engine and a learning engine, and these components enable software modifications 

according to the network state. The engine generates conclusions upon information in the knowledge 

base, however these information are based on reasoning and learning techniques. The reasoning 

engine could be defined as artificial intelligence to take decisions. The learning engine is responsible 

for manipulating knowledge gathered from experiences. Finally we can deduce that there is a 

coupling among knowledge, learning and reasoning. 

2.2 Cognitive Radio Technology 

Cognitive radio includes four main functional blocks 

i) Spectrum Sensing 

ii) Spectrum Management 

iii) Spectrum Sharing and 

iv) Spectrum Mobility 

Spectrum Sensing will determine the spectrum availability and the presence of the licensed users (also 

known as primary users). Spectrum management will predict how long the spectrum holes are going 

to remain open for use of the unlicensed users (also called the secondary users or CR users). Spectrum 
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Sharing is meant to allocate the spectrum holes equitably among the secondary users bearing in mind 

the usage cost. Spectrum Mobility is to ensure and maintain the seamless communication requirements 

during the transition to lighter spectrum. The spectrum sensing function is the most crucial to establish 

a cognitive radio network. There are some techniques used for spectrum sensing, which are; Primary 

transmitter detection, cooperative detection and interference detection. The reason that spectrum 

sensing is the most crucial task is that there are many uncertainties connected while picking up the 

signals to find the holes in the band like Channel Uncertainty, Noise Uncertainty, Sensing Interference 

Limit, etc. So, these uncertainties need to be addressed while solving the problem that is spectrum 

sensing in cognitive radio networks. 

2.3 Reasoning 

The reasoning output is simply an intelligent answer to set of questions or problems based on 

environment observation and network objectives. The result of the reasoning highly depends on 

the knowledge base and how accurate is the data measured or the environment observed.  The more 

it is accurate the better the reasoning output will be, leading to better decision making. 

2.3.1 Reasoning Types 

There are different types of reasoning used in the cognitive networks nowadays. The reasoning type 

to be used depends on the network and the environment in which it will be used. The following are 

some of these types. 

2.3.1.1 Proactive 

The proactive reasoning is used in a wireless environment that is not time sensitive which means 

that the network characteristic and topology does not change constantly and rapidly, this allows the 

reasoning output to be more accurate and reliable. 

The proactive technique takes place after a problem occurs and is usually combined with centralized 

and the sequential reasoning. In other words the relationship between the actions should be taken 

and the output is closely observed and examined to generate an optimal reasoning output. 

2.3.1.2 Reactive 

On the other hand, reactive reasoning is more suitable in a dynamic wireless environment where 

the network characteristics changes rapidly and the environment in this case is time sensitive. 
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The reactive technique take place when a problem is predicted and is used as it shortens the time 

needed for reasoning, it does not rely on the past actions or knowledge it uses the available 

information and act upon the expected results of certain actions. 

Examples in which reactive reasoning approach is used is in cognitive adhoc networks and cognitive 

cellular networks as they are highly dynamic wireless environments. 

2.4 Learning in cognitive radio networks 

Learning in cognitive radios has recently gained a lot of interest in the literature. In this section, 

artificial intelligence and machine learning are introduced as well as a survey of the state-of-the-art 

achievements in applying learning techniques in cognitive radio networks.  

The approach of learning is modifying a nodes behavior through training, while ongoing different 

network conditions or the ability to create knowledge from this experience to take it into 

consideration in the future. The process of learning must be powerful enough to enrich the 

knowledge base from its past actions, consequently increasing the efficiency of the reasoning. 

Learning mechanisms could be divided to subgroups of unsupervised or supervised learning 

techniques. Corresponding to learning by reinforcement and instruction, respectively. 

2.4.1 Supervised Learning 

On the contrary supervised learning needs prior information or to be in certain familiar environments. 

In this section we discuss some supervised learning techniques applied in cognitive networks. 

2.4.1.1 Q-Routing 

Q-Learning is a reinforcement learning algorithm that is able to learn an optimal sequence of actions 

in an environment which maximizes rewards received from the environment. Q-Routing is an 

adaptation from Q-Learning that is able to distributively route packets in a network. 

2.4.1.2 The Bayesian Learning Algorithm approach 

Bayesian analysis accords significant importance to the prior distribution which is supposed to 

represent knowledge about unknown parameters before the data becomes available. While it is a 

common assumption that the agent has no prior knowledge about what it is trying to learn, this is 

not an accurate reflection of reality in many cases. Frequently, an agent will have some prior 
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information, and the learning process should ideally exploit this available information. Bayesian 

learning can be viewed as a form of uncertain reasoning from observations [4]. 

Bayesian learning is used to calculate the probability of each hypothesis, given the data, and to make 

predictions on that basis. It has been shown that the true hypothesis eventually dominates in 

Bayesian prediction [5]. Bayesian analysis is appealing since it provides a mathematical formulation 

of how previous knowledge can be incorporated with fresh evidence to create new knowledge. 

However, choosing the right prior distribution is not trivial and an incorrect assumption can skew 

the inference. It is for this reason that some statisticians feel uneasy about the use of prior 

distributions fearing that it may distort “what the data are trying to say.” [6]. We can model the prior 

distribution to prior knowledge or use a ‘noninformative’ prior to model ignorance about prior 

information. Bayesian networks can be used for computing how much a set of mutually exclusive 

prior events contributes to a posterior condition, which can be a prior to yet another posterior, and 

so on. Bayesian networks can be used for reasoning and for tracing chain of conditional causation 

back from the final condition to the initial causes [5] 

Bayesian approach is based on probabilistic learning. It provides exact inferences which do not rely 

on large sample approximations with simple interpretations. Bayesian inference estimates a full 

probability model and allows prior knowledge and results to be used in the current model. Bayesian 

inference has a statistical decision to facilitate decision-making, it includes uncertainty in the 

probability model, yielding more realistic predictions. The Bayesian approach does not face over fitting 

since it uses observed data only. 

2.5 Cognitive Routing Tasks in CRNs 

Previous work on routing in multi-hop wireless networks can be noted for the most part for the lack 

of learning from environment. Most of the classical wireless routing protocols tend to use 

instantaneous online parameters and do not utilize environment history and learn from it to predict 

about links and parameters that are more likely to result in better quality routes. These protocols 

also do not learn about parameter history and therefore cannot prioritize higher-quality links over 

links of poor quality. While primitive protocols such as AODV, DSDV, and DSR have typically 

relied on basic metrics such as hop count or delay, other metrics were developed for wireless 

networks over time such as those that targeted: maximizing throughput [7], minimizing interference 

[8], load balancing [9], and choosing more reliable links [10]. Since metrics designed for traditional 

wireless networks do not sufficiently capture the time-varying spectrum availability found in CRNs, 
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some recent works have proposed more nuanced spectrum aware routing metrics [11] [12] [13] [7] 

[14]. 

As noted earlier, although CRN routing protocols do mostly incorporate spectrum-awareness into 

their design, future cognitive networks will require greater architectural support from fully ‘cognitive 

routing protocols’ that will seamlessly incorporate AI-based techniques such as learning, planning, 

and reasoning in their design. 

Some inference and reasoning and modeling and prediction cognitive tasks that future cognitive 

routing protocols must incorporate are described. 

2.5.1 Inference and Reasoning Tasks 

Reasoning is an important aspect of CRN behavior and is necessary for cognitive behavior. 

Knowledge can be represented using an ontology which provides shared vocabulary useful for 

modeling a domain, e.g., it can be used to model the type of objects and concepts existing in a system 

or domain, and their mutual relationship and properties [15]. A rule based system can make use of 

a knowledge base and some means of inference through an inference engine. 

It is also possible to reason by analogy. This involves the transferring of knowledge from a past 

analogous situation to another similar present situation. Case-based reasoning (CBR) is a well-known 

kind of analogy making which has been exploited in CRN research [16].  In case-based reasoning a 

database of existing cases is maintained and used to draw conclusions about new cases. The CBR 

reasoning method can utilize procedures like pattern matching and various statistical techniques to 

find which historical case to relate to the current case. 

Fuzzy logic is another tool that is useful for reasoning in systems and situations having inherent 

uncertainty or ambiguity. Since complete environmental knowledge is difficult, or even impossible, 

to obtain in CRNs. Fuzzy logic is a natural fit to the CRN environment where there is limited or no 

information about certain environment factors. 

2.5.2 Modeling, Prediction, and Learning Tasks 

Future cognitive routing protocols can benefit from the following tasks: i) channel quality modeling 

and prediction, ii) PU activity modeling and prediction, and iii) detecting and mitigating selfish 

behavior. We will discuss these in turn next under their respective headings. 
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2.5.2.1 Channel quality modeling and prediction 

[17] Proposed using HMM to model the wireless channel online with the HMM being trained using 

a genetic algorithm, techniques for modeling wireless network channel using Markov models are 

presented along with techniques for efficient estimation of Markov model parameters (including the 

number of states) to aid in reproducing and/or forecasting channel statistics accurately. In another 

work, Xing et al. have proposed to perform channel quality prediction using Bayesian inference [18]. 

Channel estimation problem has also been addressed in which the use of particle filters, rooted in 

Bayesian estimation, were proposed as a device for tracking statistical variations in a wireless channel. 

Using the Bayesian-based cognitive engine for learning how various channel’s quality status affects 

performance and thereby dynamically selecting a channel that improves performance. The dynamic 

selection of channels has an obvious implication for network-layer functionality and the routing 

algorithm for such networks should be able to keep up with the channel changes so that best 

performing routes are selected. 

2.5.2.1 Spectrum occupancy modeling  

A satisfactory model of spectrum occupancy (or, of spectrum white spaces) should incorporate: i) 

states of the channel along with their transition behavior, and ii) the sojourn time or the time 

duration the system resides in each of the states. 

Since many DSA environments (e.g., contention based protocols such as IEEE 802.11) do not have 

a slotted structure, it is more appropriate to use a continuous-time (CT) model. A CT model that is 

especially relevant to DSA, and one that is popularly used for modeling spectrum occupancy, is the 

semi- Markov model (SMM) which generalizes the concept of CT Markov chains (CTMCs).  

It has been posited that for practical purposes of analyzing DSA/ CRNs, a simple two-state semi-

Markov ON-OFF model is adequate for modeling spectrum usage. The OFF state represents an 

idle channel, while the ON state indicates a busy channel not available for opportunistic access, with 

the length of ON and OFF periods being random variables (RVs) following some specified 

distribution [19]. 

2.5.2.2 PU activity modeling and prediction 

In DSA CRN networks, being the licensed incumbent user, a primary user (PU) has prioritized 

access to the wireless spectrum. Therefore, on the  arrival of  a  PU,  a  SU  must either vacate the  

relevant channel by switching to another channel or by terminating its connection; alternatively, the 

PU must reduce its transmission power  to  ensure  that  PU  does  not  face  any  interference. Since 



 

11 

 

the arrivals of PU are non-deterministic, and random from  the  point-of-view of  a  SU,  frequent 

PU  arrivals can lead  to  frequent temporal connection losses  for  secondary users thereby seriously 

impacting its performance. However, a PU can probabilistically model the arrival process and traffic 

pattern of PU and avoid the channels that will be claimed by PU with a high probability. This can 

help reduce the temporal connection loss faced by SUs and potential interference faced by PUs due 

to any delays in vacation of channel by SUs. 

A cognitive radio that manages to learn the behavioral patterns of a primary user by modeling it can 

optimize its performance by exploiting the learned model. For example, a SU can exploit 

information, potentially gleaned from spectrum sensing data, and select white spaces (that emerge 

due to absence of PUs) that tend to be longer lived at certain times of day and at certain locations. 

Knowing something about PU patterns can also be helpful for advanced planning when a SU has 

to decide the channel to switch to on the arrival of a PU [20]. 

A number of techniques have been proposed for spectrum prediction including techniques that are: 

a) HMM based, b) NN based, Bayesian inference based, moving-average based, autoregressive-

model based, and static-neighbor-graph based (which is able to incorporate PU mobility pattern) 

[18]. 

2.5.2.3 Detection of Selfish Behavior 

Network-layer behavior entails both the problems of routing and forwarding. In wireless networks, 

selfish behavior can manifest itself when nodes engage in  unsocial behavior—i.e., they utilize the  

network resources but do not pay back the favor by providing necessary services to the other 

network nodes. For correct network behavior, it is important that such behavior be arrested. The 

following papers have addressed the problems of identifying and mitigating selfish network behavior 

[21] [22]. This problem has been studied through the tools provided by game theory in [23]. 

2.6 Routing Protocols for CRNs 

Routing protocols for wireless ad hoc networks can be classified into reactive and proactive protocols 

[24]. Reactive protocols build on-demand paths between the source and destination nodes only when 

needed. In proactive protocols, each node maintains fresh routing tables for all destinations, by means 

of periodic distribution of information (e.g. link state) throughout the network. Therefore, proactive 

protocols reduce path acquisition time compared to reactive ones, but at the same time exhibit very 

slow reaction to network dynamics, such as nodes’ mobility [24]. In CRNs, the dynamic spectrum 
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allocation determines that each wireless link may experience different conditions over time, as a 

function of the interference of PUs, available bandwidth, and so on. For this reason, we focus our 

attention on reactive protocols, and we consider two approaches for route formation over CRNs:  

 Single-path routing. We consider the AODV routing protocol, which discovers a single path 

between a source and a destination node.  

 Multi-path Routing. We consider the AOMDV routing protocol, which discovers multiple paths 

between a source and a destination node. The discovered paths can be node disjoint, i.e. they have 

no nodes in common, or link-disjoint, i.e. they have no links in common.  

2.7 Simulation Packages 

Cognitive Radio Cognitive Network (CRCN) [15] is a simulation framework designed for ns-2 that 

provides multi/single radio and multi-channel support per node. It provides APIs that return 

information, such as the current noise or traffic conditions at a given channel, and provides a 

mechanism for channel handoff. CogNS [25] is another extension for ns-2 that allows one network 

interface per node that is able to sense PU activity, and defer to another free channel based on a 

proposed spectrum decision algorithm. Nodes created in this environment cannot incorporate 

multiple radios per node. [26]Provides a CR simulation extension for OMNeT++ [27]. It provides 

support for multiple interfaces per node, and is focused on evaluating CR MAC layer protocols. [28] 

Is a simulator written in C++ for CR networks.  

2.8 Evaluation Metrics 

A wide variety of routing protocols have been proposed for CRNs and these routing protocols have 

used a diverse set of routing metrics and objectives: e.g., throughput maximizing protocols [29] [30] 

[11] [31], route-stability maximizing protocols [32] delay minimizing protocols [33] [34] [12] and 

route-maintenance minimizing protocols [13] [7]. 

The  most  commonly  used  approach  in  literature  is  to incorporate these metrics into some 

variant of a reactive or an  on-demand routing protocol to  avoid the overhead of managing dynamic 

topologies proactively. With dynamic spectrum access (DSA) being envisioned as a prime 

application of CRNs, it is important for routing protocols for CRNs to incorporate PU traffic 

dynamics into its design. Some of the CRN routing protocols have conspicuously not catered to PU 

dynamics in their design [29] [31] [34], although more recent work [30] [11] [33] [7] have importantly 

incorporated PU awareness. 
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[35] Have conducted a detailed performance evaluation of three representative CRN routing 

protocols: SAMER [11] , Coolest Path [36] and CRP [12] using both simulations (on the NS2 

simulator) and an empirical evaluation (on a testbed of 6 node testbed based on USRP2 platform). 

The three protocols evaluated all have different design objectives. SAMER aims mainly at finding 

the highest throughput path while considering both the PU/ SU activities and the link quality. 

Coolest Path is designed to prefer paths that more stable since it prefers path with the highest 

spectrum availability. CRP is designed to either find a path with minimum end-to-end delay along 

with satisfactory PU protection, or to offer more complete protection to PU receivers at the cost of 

some performance degradation to SUs. Due to the randomness of PU activity these protocols and 

their metrics falter due to the need of SUs to vacate the channels at the arrival of Pus. 

2.9 Research Gap 

When planning the deployment of CR networks or testing a new protocol, researchers face uphill 

challenges given the challenging environment in which these networks operate, it is important for CRs 

to learn from the previous network conditions, predict and act, and not just depend on instantaneous 

parameters hence the need to incorporate machine learning techniques. The CRs must quickly 

determine which licensed channels are available, and make use of this spectrum before the PU reclaims 

it. Accurate protocol operation is critical, as any prolonged use of the channel raises concerns of 

interfering with the activities of the PUs. This concern directly translates to meticulous testing of the 

protocol or networking concept in a controlled environment. Given the costs of purchasing multiple 

software defined radios and deploying them in a city, which will serve as the hardware building blocks 

of CR enabled smart city network, and the time investment in writing and deploying code in them, 

accurate computer simulation often becomes the methodology of choice. While several commercial 

simulators exist, such as OPNET, which can capably simulate heterogeneous networks, our focus in 

this work remains on improvements for open-source use.  

The work proposed is focused on providing the first cognitive radio extension that incorporates 

machine learning techniques to the network simulator 3 [16] or ns-3 to learn and perform predictions 

in reactive routing, which is a discrete event driven simulator. It is suitable for large scale simulations, 

which reflect better the practical, city-wide deployments. Moreover, ns-3 simulator is poised to replace 

its widely popular predecessor, network simulator 2 or ns-2 as it provides several advantages:  

(i) it has a new core written in C++, (ii) it is geared for wireless communications, (iii) it offers mobility 

schemes that are crucial for realizing vehicular networks that will play a role in smart cities, (iv) it has 
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an organized modular architecture that is expandable, (v) it includes intuitive and extensive 

documentation via the html Doxygen [37]  interface, and (vi) the same ns-3 code can be easily adapted 

to work in real devices [16]. 

Additionally, several more accurate highway mobility extensions such as [4] can also be incorporated 

in the simulation scenarios, thereby reflecting the road layouts that actually exist. Despite the clear 

superiority of this new simulation platform, ns-3 lacks implementation support for CR networks. To 

bridge this gap, several changes have been catered for in various network layers in ns-3 [38]. 
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3. Proposed Methodology  

3.1 Introduction 

In this section, we detail the needed changes to each layer of the protocol stack for a given CR node 

in ns-3. Figure 2 depicts an overview of these changes. As can be seen, the proposed CR extension 

exposes several APIs and listeners to all the networking layers. We also make use of ns-3 tagging 

feature. The method to ‘tag’ a packet with some information helps to determine that packet’s internal 

routing in a given node, thereby avoiding the costly overhead that would ensue if said information 

was to be integrated into the packet’s header instead.  

1) All layers up to the transport layer: No changes are proposed to these layers. However, all the 

Spectrum Manager’s APIs and listeners are exposed to these layers so a network researcher working 

on a CR application, for example, can make use of the CR features of the node by calling the respective 

APIs in the Spectrum Manager.  

2) Transport layer: Our framework modifies this layer so that any packet that is generated here will be 

tagged as a DATA packet. This information will be processed by the lower layers to determine the 

correct routing of such packets. This change affects all transport layer protocols defined in the 

simulator such as TCP, UDP, and potentially any new transport protocol that a researcher might be 

interested in implementing.  

3) Network layer: For CRs to work in an ad-hoc topology, some information must be exchanged 

between neighboring nodes to determine listening channel of each member of the network. We extend 

the information carried in the packets of the AODV protocol to include the current listening channel 

of each node, as the packet traverse through the paths details of the state of path like congestion met, 

queuing delays, PU activity and SU activity detection rates are sent back to the source to update the 

knowledge of the machine on the state of paths, which will improve on the prediction for the routes 

in the future.. This information will be passed along with every HELLO, RREQ and RREP messages. 

Every packet that is generated by AODV is tagged as CTRL or control packet.  

4) Link and physical layers: A CR node may define any number of these cognitive interfaces. Each 

interface constitutes of three separate MAC-PHY layers; the first is for communicating control packet 

information on a common control channel. For example AODV and ARP messages will be 

communicated over such an interface. We call this interface the CTRL interface. The second is used 

to transmit data messages to neighboring nodes (TX).  
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The transmission, sensing times, and probability of detection error can all be defined using the ns-3 

attribute system. We will also emphasize that the Cognitive Interface makes all these new calls through 

the Spectrum Manager block. The tagging mechanism that was discussed earlier in the transport and 

network layers are used here to determine which interface a packet should be sent on.  

 

Figure 2: Layered Architecture of an NS-3 CR Node 

The TX Distributed Coordination Function (DCF) will also be modified to store queued packets into 

different MAC queues based on the channel that they should be transmitted on. This will help the TX 

interface select which packets to transmit when it switches spectrum. At the physical layer (PHY), a 

new sensing state will be added. The functionality of the sensing state is similar to that of the hand-

off state where the PHY layer instructs the DCF to halt dequeueing from the respective MAC queue, 

while the sensing or hand-off operation is ongoing. The sensing and hand-off times can be defined 

using the ns-3 attribute system. The sensing state in the PHY layer uses the Spectrum Manager APIs 

which query the PU Database (See Figure 2) to determine PU activity. Note that the PHY layer can 

switch between any number of defined channels. These channels can have a different frequency, 

propagation path loss and delay models, as defined by the default ns-3 simulation environment.  
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3.2 Learning 

In this section, we introduce the steps of our learning framework. The figure below presents a high 

level overview of the steps involved, with the four key steps listed as follows:  

1. First, we select the features to be used in training and classification;  

2. Then, we instrument every node in the network to track these features and their corresponding 

labels which are periodically collected; 

 

Figure 3: The Learning Process 

3. Next, we use the labeled data to perform training at in the machine learning classifier;  

4. Finally, we instruct the nodes in the network to use the classifier for differentiating between high 

quality and low quality links at runtime for real deployment.  

3.2.1 Feature Extraction and Output Labeling 

The first step in supervised learning extracts input features and labels output. This step requires 

domain knowledge to produce high-quality, and well-prepared data. In wireless sensor networks, we 

favor local features (within one- hop) that can be collected without expensive communications. This 

is because cognitive networks are very resource constrained and it is desirable and necessary to impose 

as little overhead as possible. As pointed out in previous studies, link delivery probability (or link 

quality) is determined by many factors, including wireless channel conditions, such as internode 

separation, fast fading and slow fading, the traffic pattern in the network and local traffic load of each 

node, etc.  
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3.2.2 Output labeling 

Output labeling is the process of classifying sample outputs using domain knowledge. Supervised 

learning algorithms need to use labels to determine what category the input feature vector is 

assigned. There are many ways to label link quality, the first one uses a binary model that predicts a 

link either good or bad. The second one uses a multi-class model and can predict a set of classes of 

link quality. These categories can be used to distinguish link quality in a finer granularity than using 

the binary model.  

3.2.3 Sample Collection  

To perform offline training, we collect samples from cognitive nodes and stored in files which will 

be sent to the classifier which is configured as the machine learning algorithm. 

3.2.4 Offline Training  

Our learning and validation experiment will be performed using a Bayesian network classifier, a 

standard machine learning algorithm. As with most data-intensive machine learning algorithms, it is 

important to avoid having the classifier memorize, or over fit, the training data. We use cross 

validation and tree pruning to reduce such effects. Cross validation is a standard method to estimate 

classification accuracy over unseen data. We will use 10-fold cross validation in our experiments. 

The available data will be divided into ten equal-sized blocks. Nine of the blocks will be randomly 

chosen and used for training the classifier, with the remaining block used for validation. This 

process will be repeated 10 times to give a reliable measure of classification accuracy 

3.3 Study Requirement 

The environment where the next set of evaluations is con- ducted is an Ubuntu Linux 64-bit 

distribution with Linux kernel v3.1.5. The CPU is an Intel Core i5 clocked at 2.80 GHz. All 

simulations will be performed on a single thread/core. The installed RAM has a total capacity of 8 

GB. In the simulations, the nodes will perform sensing and data transmission in intervals of 100ms 

and 1s, respectively. The CR interface channel switching delay is set to 20µs. The wifi MAC standard 

is set to 802.1g with a rate of 54 Mbps. We will use a total number of 1 channels that the PUs and 

CR users can switch to. 

3.3.1 CR network configuration and simulation setup 

The simulation setup and CR network configuration parameters are as follows, 25 nodes will be 

placed randomly with a random uniform distribution in a 500 m × 500 m field. Each CR node has a 
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single radio transceiver and can access to 1 channels. Each wireless channel has 2Mbps bandwidth. 

Two-ray ground model is set as propagation model of CR nodes. Host CR nodes will use TCP Reno 

as transport protocol. The AODV and AOMDV protocol will be used by CR nodes as routing 

protocol. 

3.4 Performance Parameters for Evaluation 

In this section, we propose how we will perform the evaluation of the end-to-end protocols over CR 

routing layer protocols. 

3.4.1 Routing layer 

We consider two metrics for the performance analysis: 

1. Throughput maximization: In CR networks it’s important to use routes that will provide the most 

available capacity to enable efficient and effective end to end communication. To use routes with 

the highest available data rates. 

2. Route stability maximization: due to the inherent nature of CR networks, SUs have to be assured 

of what stable routes can be used in communication due to the limitation of the existence of PU 

activity.  

3. Delay minimization: We also want to discover how can routing protocols using a variant of 

machine learning be able to detect routes that provide for minimal delays. 

4.  Route discovery frequency. This is the average number of route discovery procedures generated by 

the source node, for each second. A route discovery is initiated when a source node broadcasts a route 

request message (RREQ), containing the address of the destination node. It provides an indicator of 

the stability of the route discovered by the routing protocol. 

5.  Packet delivery ratio (PDR). This is the ratio of packets which are received by the destination node, 

over the number of packets sent by the source. It provides an indicator of end-to-end delivery 

capabilities of the routing protocol. 
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